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Abstract

Today, Information Retrieval seems to be moving in a new direction. Instead of the old scheme

of returning a list of most relevant documents in response to queries, the focus is shifted to

answering user’s information need is a structured manner so as to reduce the cognitive burden

on a user as much as possible. Here we present QTQ, a system which generates a timeline in

response to queries seeking fluent quantities. We use web pages as our data source, and the

inherent noise presents a formidable challenge for information extraction. We propose a novel

approach, which combines extractions from both free text and tables found on web pages. In-

stead of making hard extraction decisions, we keep at hand various alternative extractions with

associated confidence scores, and use a consensus model to collectively score candidates. Our

experiments clearly support the gains of using a collective model versus independent extrac-

tions. One of the main parts of the collective model is the temporal regression model, which

models the distribution of values for each time epoch. Given the noisy nature of extractions

from the web, we use a Kernel Density model for the task. Experiments on our dataset com-

prising of about 270 queries, show that the Kernel Density model outperforms the Gaussian

Processes baseline by 11% for MAP and by 78% for average probability of the correct answer

over all gold time values. The collective method outperforms the independent method by 20%

for map and by 32% for probability of the correct answer.
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Chapter 1

Introduction

In recent years, a few systems [Wu and Marian, 2007, Banerjee et al., 2009a, Bakalov et al.,

2011, Sarawagi and Chakrabarti, 2014] have been proposed for responding to queries seeking

quantities. While some quantities (value of π, number of sides in a heptagon) have no uncer-

tainty about them (although measurements may always be approximate), more common in Web

search are quantities wth substantial uncertainty and/or variability. These may arise from many

different root causes, some of which are listed below:

• Ambiguity: Asking for the frequency of cordless phones or the half-life of Plutonium is

ambiguous; there are multiple standard frequencies and isotopes of Plutonium.

• Population diversity: The battery life of an iPad or the height of a giraffe is a distribution

over many instances in a population of iPads and giraffes.

• Temporal variation: Atmospheric CO2, population of countries, net worth of a person,

revenue of a company, all change with time.

1.1 Our Goal

We focus exclusively on temporal variation. Specifically, we describe a system called QTQ

(querying for temporal quantities) that accepts a two-part query consisting of textual descrip-

tions of an entity (e.g., bill gates) and an attribute (e.g., worth), with an optional unit

(e.g., dollars), and then automatically searches HTML tables and text on the Web to dis-

cover and report quantity responses along a timeline. A sample output for the query, {“Finland”,
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Figure 1.1: Top few extractions for the query - “Finland Population”

“Population”, null} is shown in Figure 1.1. The size of various points is proportional to their

final confidence from our collective model.

1.2 Challenges

The above goals of QTQ are significantly different and extended compared to prior work

[Banerjee et al., 2009a, Bakalov et al., 2011, Sarawagi and Chakrabarti, 2014], and highly

non-trivial. Quantities and units are expressed in myriad surface forms in unstructured text and

tables. The same quantity type may be expressed in diverse units. A quantity may be reported to

different approximations in different source documents. Disambiguating units from tokens like

“m” or “l” is difficult. Clues to the entity or attribute often lurk in the textual contexts of tables.

Most important, when a quantity shows temporal variation, it has to be discovered and teased

apart from the other forms of variability listed above. As a vital step, each quantity extracted

has to be (probabilistically) associated with a time epoch, if evidenced near the extraction site.

Figure 1.2 presents sample extractions from text and tables for the query {”India”, ”Popu-

lation”, ”kiloton”}. We shall use this example to highlight a few challenges of the task.

• In the text, t1, the quantity of interest (in bold) is lexically separated from the unit “kilo-

ton”.
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• The unit is present as “kt” which is ambiguous, and can also be short for the unit “carat(purity)”.

• There are multiple temporal expressions present in vicinity of the quantity of interest

(2009, 1960).

• The quantity extracted from this snippet, is the value of the attribute “CO2 emission from

liquid fuel consumption” and hence, not a correct answer to the query. The confidence

score for such an extraction must be low in the final answer.

• In the table, t2, the relevant temporal expression is present in one of the many context

texts present in the vicinity of the table.

Raw text  (t1) 

See also: Thematic mapCountry comparisonCountry ranking 
CO2 emissions from liquid fuel consumption (kt) As of 2009, 
the value for CO2 emissions from liquid fuel consumption 
(kt) in India was 469,930. As the graph below shows, over 
the past 49 years this indicator reached a maximum value of 
469,930 in 2009 and a minimum value of 19,461 in 1960. 
Definition: Carbon 

Country Total Emissions 

(Million Metric Tons of CO2) 

China 6534 

India 1495 

Brazil 428 

Value : 469930.0 
Relevance Score : 2.03 
Unit : kiloton (1.03),  Carat  (0.7) 
Time : 2009  score : 0.99 
Time : 1960, score  1.01E-5 

Value : 1495.0 
Relevance Score : 0.79 
Unit : tonne [million]  score : 3.33 
Time : 2008  score : 0.99  

… Here we list the 20 countries 
with the highest carbon dioxide 
emissions in 2008.  

Query (q) 

Entity : India Attribute : CO2 emission Unit : kiloton 

Raw table with context  (t2) 

Extracted snippet  (S1) 
Extracted snippet  (S2) 

Response 

Time Value Score 

2009 469930 0.215 

2008 1495000 0.997 

… 

Figure 1.2: An example query, the raw text and table sources, and the returned response.

To our knowledge, QTQ is the first system satisfying all the above requirements. Apart from

introducing and formalizing the problem, we present critical algorithmic building-blocks and

their evaluation:

• Choice of the temporal model for open-domain Web-supported queries.
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• Methods of extracting candidate values, their units, and temporal evidence from text and

tables.

• Collective (across extraction sites) inference for generating timeline responses.

1.3 Organization of the Report

The rest of the report is organized as follows. We briefly discuss related work in the area in

Chapter 2. Chapter 3 details the high-level design of QTQ. Candidate extraction, temporal and

unit extraction and association and other pre-processing steps are detailed in Chapter 4. Chapter

5 presents the overall collective model, which refine scores of individual noisy extractions, and

its components. In Chapter 6 we present a detailed evaluation of our system under various query

loads. The report concludes with a discussion of the direction of future work in Chapter 7.
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Chapter 2

Related work

The problem of generating timelines for temporally varying numerical attributes has not been

addressed before to the best of our knowledge.

Quantity search without temporality has been studied before. Moriceau [Moriceau, 2006]

was among the earliest to formalize quantity search, and provide some initial notions of tem-

poral trends and aggregation of values. A more extensive system was built by Wu and Marian

[Wu and Marian, 2007, “W&M”]. Banerjee etal [Banerjee et al., 2009a, “QCQ”] proposed the

quantity interval ranking problem. SCAD [Bakalov et al., 2011] collected quantities while sat-

isfying domain-guided numeric constraints between them (e.g., a laptop screen is wider than it

is tall). All of these works ignore time.

Recently, [Zhang and Chakrabarti, 2013] propose to extract numerical attributes only from

Web tables as valid at a particular point in time. Extraction from text documents is significantly

more challenging because of more potential for irrelevant answers. Also, They do not model

uncertain value distributions. Their aggregation/consensus is based on exact match of values,

which we demonstrate as weaker than our value distribution model. Their “query” resembles

a table completion task, with ∼100 entities, time, units, and scales explicitly provided. In

contrast, we generate the timeline given only an entity and attribute name and do not require

explicit specification of a unit.

[McClosky and Manning, 2012] present a proposal for generation of temporal ranges for

facts that are valid only within a specific date. This problem is very different from ours, because

each fact has a start and end date. In our case, the attribute itself is valid forever but it just takes

different values at different points in time, and the value is quantitative.
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Chapter 3

Architecture

Figure 3.1 shows the architecture of QTQ. We present an overview of the main components

next. The user query q comprising of an entity string eq (e.g. “Argentina”, “Microsoft”), a

time-varying attribute name string aq (e.g. “Forest area, “Revenue”), and an optional unit name

(e.g. “square kilometer”, “US dollars”) is submitted to QTQ. The query words are used to

collect text documents from an indexed collection of Web documents (e.g. Google’s) and an

indexed store of Web tables (e.g. WWT’s [Pimplikar and Sarawagi, 2012], or Web tables at

research.google.com/tables.). Figure 1.2 shows examples of raw text and tables that we get in

response to a query. Converting these raw sources into the answer in the form of time-value

distribution involves several non-trivial extractions and aggregations. We briefly summarize

these main steps next.

3.1 Snippet generation

A snippet is centred around a quantity that is deemed to be the value of the attribute at a given

point in time. The context in which the quantity is expressed is processed to estimate the

relevance of the quantity to the query (rsq or rs, where rs ∈ [0, 1]), the unit of the quantity, and

the time at which quantity is valid. Naturally, the definition and representation of snippets is

very different for plain text and tables.

3.1.1 Table snippet

A table snippet is centred around a cell in a table that contains the quantity. For example, in

the table, t2, in Figure 1.2, the cell at row 2 and column 1 is a snippet for the query {”India”,

6
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Figure 3.1: System architecture.
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Figure 3.2: Sample Snippet

”CO2 emission”}. In general, a table can generate more than one snippet. A cell (r, c) at a

row r and column c of a table is a candidate snippet, if it contains a quantity, the entity string

eq matches either a cell in the same row, or the table is established to be about eq, the attribute

string qq matches a header of column c or the text surrounding the table. All such matches can

be quite noisy, therefore the relevance value of the snippet to the query has a lot of uncertainty

associated with it. The exact method of established this relevance and generating the candidate

snippets can be found in [Sarawagi and Chakrabarti, 2014].

3.1.2 Text snippet

A text snippet is centred around quantities found in the vicinity of entity and attribute words of

the query. In Figure 1.2, one of the snippets created from the raw text, t1, is s1. For obvious

reasons, this simplistic method of creating candidates from text on the web leads to many noisy

extractions. We therefore apply many hand crafted rules to filter out such noise. Though, some

useful information is lost, but the process leads to better quality of snippets retained.

The snippets are then ranked on their relevance to the query using a supervised RankSVM

model as presented in [Joachims, 2002]. The features are tf-idf based for query words in the

snippet. Details of the feature set and learning can be found in [Banerjee et al., 2009a]. The

ranking score, is used as the relevance score (rs), after putting it through a sigmoid function and

multiplying with a parameter θ. The parameter θ is empirically determined, and serves to adjust

the relative importance of text and table relevance scores.

3.2 Quantity and Unit Extraction

We extract from each snippet, the possible values of the quantity by parsing the noisy string for

the different numbers across different locales that it can represent. For example, in Figure 3.2

the quantity in the snippet “1 50” can be parsed to extract two different float values - 1.5 and

150.

The values are meaningless without their associated units. Typically, the unit is mentioned
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in a noisy format in the context surrounding the quantity. We identify and annotate this mention

with respect to a unit in a well-established catalog of units. Specifically, we use the QuTree

catalog that contains a list of 750 well-established units of measurements grouped into 44 quan-

tity types, such as Length, Area, and Speed. Each quantity type has a canonical unit, and other

units come with conversion factors to/from the canonical unit.

The extraction of quantities is extremely challenging in both table and text. For tables,

the unit can be present either in the cell containing the quantity, or the header of the quantity

column or in rare cases split across the two. The correct extraction of the units is an extremely

challenging task and [Sarawagi and Chakrabarti, 2014] presents a context free grammar based

parser for performing this extraction task. For text, the unit string is typically present right after

the value (e.g. 50 kmph) or right before the value ($ 100), but sometimes the unit can be far

from the quantity as shown in the text for snippet s1 where the unit “kt” is separated from the

quantity “469,930”. We modify unit tagger described in [Sarawagi and Chakrabarti, 2014] to

extract units from free format text. The quantity tagger outputs a list of units with their scores:

(us1, g1),...,(usj, gj). Each unit usj with its type tsj , gives a different value of the quantity, vsj .

3.3 Temporal clues extraction and association

Next, we process each snippet to identify temporal clues that can help establish the date at

which the quantity is stated in the snippet. We solve this problem in two steps: first we identify

all time expressions in the context around the quantity, next we score each candidate time with

a real-value indicating the degree of association of the time with the quantity.

3.3.1 Challenges

• Temporal expression identification and normalization is not simple because mentions are

present in diverse surface forms. (e.g. “Dec. 2012”, “last year”). Any system with a

decent recall cannot rely on simple regular expression based matching for the task.

• Due to the absence of any structure, temporal association in text is challenging. For

example in Figure 1.2, the quantity in snippet t1 is separated from its relevant temporal

expression by multiple tokens. Also, there are other temporal expressions in the snippet

(“1960”).
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Figure 3.3: Sample Table

• The presence of some, albeit fuzzy, structure in web tables, makes the problem of tempo-

ral association slightly easier in tables when temporal information is present in the table.

For example in Figure 3.3, the presence of temporal information in the same header as the

table snippet, indicates strongly that the temporal mention is associated to the extracted

quantity.

• However in the absence of temporal expression inside the table, we have to fall back to

extraction and association of temporal expressions from context text found in the vicinity

of the table. For example, in Figure 1.2, for the quantity extracted from table t1 the

relevant temporal expression is present in one of the many context texts.

Since this is an important component of our system, and since there is little prior work on

how to accurately solve this task, we elaborate on how we solve these two steps in Chapter 4.

3.4 Response generation as a collective temporal model

The candidate table and text snippets, along with their relevance scores, possible number and

unit extractions, and candidate time associations, are input to a collective model that we describe

in Chapter 5. The output of the model is a response to be presented to the user as a time-varying

distribution of the quantity.
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Chapter 4

Temporal clues extraction and scoring

An important part of the QTQsystem, is the module to extract, normalize and associate temporal

expressions to snippet quantities. Due to the challenges of the task, explained in Chapter 3, the

task is highly non-trivial. In this chapter we present our method of extracting temporal clues

and scoring them for both table and plain text snippets.

4.1 Extracting and Normalizing Temporal clues

The first step towards temporal association, is recognizing temporal expressions in text and ta-

bles, and extracting their correct value. Temporal expressions found can be broadly categorized

into one of the three following types,

1. Explicit Temporal Expressions - Expressions of the type Jan 30, 2011. Normally such

temporal expressions are extracted using regular expressions and normalization is trivial.

2. Implicit Temporal Expressions - Expressions like Independence Day, 2010. Such tem-

poral expressions require world knowledge and context disambiguation to extract and

normalize.

3. Relative Temporal Expressions - Temporal expressions like tomorrow or last year are

relative temporal expressions as they can only be normalized relative to an anchor date.

Using just regular expressions, for temporal expression extraction, gives poor precision and

recall. To give an example of the challenges in the task, consider the following few sentences.

• “John Doe, the movie star who born on the 9th of March, 1983, died yesterday.”

11



– Normalization of the value of yesterday

• “On 15th August of the year 1957, India became Independent”

– 15th August of the year 1957 is one temporal expression

• “Independence Day”

– Temporal expression whose normalized value depends on the context

Most temporal expression extraction and normalization systems are deterministic and rule

based. HeidelTime ([Strötgen and Gertz, 2010]) is one such system, which is a part of the

UIMA pipleline1, and annotates and normalizes temporal expressions according to the TimeML

standards2. In our experiments, we found HeidelTime gave the best qualitative results, when

compared to SUTime ([Chang and Manning, 2012]) and GUTime ([Verhagen and Pustejovsky,

2012]). HeidelTime handles every temporal expression as a three tuple< ei, ti, vi >, where ei is

the expression as it appears in text, ti is the type of the temporal expression (one of DATE, TIME,

DURATION, SET) and vi is the normalized value. It uses hand-crafted rules for extraction and

normalization of each type of temporal expressions. It has a database of world knowledge

which is used to normalize implicit temporal expressions. To disambiguate relative temporal

expressions, a rather straightforward approach of using the last mentioned concrete date as a

reference date is used. A reference date can also be supplied for each document, and all relative

temporal expressions in that document are then normalized using the given date.

4.2 Temporal Association

The next stage, is associating the extracted temporal expressions to snippet quantities. Consider

the text t1 from Figure 1.2 or the text “Population of India in 2010 had more than doubled from

the figure in 1970 to reach 1.2 billion”. The relevant temporal expression for a quantity, might

not be the closest or even in the same sentence. Noisy text extracted from web pages, makes

the problem harder. We now present our techniques for temporal association in text and tables.

1http://uima.apache.org/
2http://www.timeml.org
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4.2.1 Text

We approach the problem of temporal association in text, as a supervised classification problem.

For a text snippet s, containing quantity q and a list of temporal mentions tm1, .., tmT , we create

a list of instances of value, temporal mention pairs. For each instance (v, tt), we try to determine

if the association holds, and use the association score. An important point to note here is, that

multiple temporal mentions might represent the same time epoch. For example, in Figure 1.2

the text t1 contains two temporal mentions for the time 2009. Since our further computations

consider only distinct time epochs from each snippet, rather than temporal mentions, we use the

best association score among all temporal mentions for a particular time epoch y as csy.

For supervision, we had text snippets annotated with the correct temporal association, for

23 queries. This gives us over 2500 training instances of value, time pairs. We train a logis-

tic classifier over features extracted from the text between the annotated value and temporal

expression, and a few tokens on either side. Broad types of features used are:

1. Features indicating sentence and segment boundaries

2. Preposition words indicating presence of temporal relation (e.g. “until”, “since”)

3. Features for common temporal patterns (e.g. “quantity in time”)

4. Presence of temporal prepositions around the intermediate text

5. Normalized length of the intermediate text

6. Number of other temporal expressions in the intermediate text

4.2.2 Tables

Given that tables contain more structure than plain text, temporal association in tables is com-

paratively easier. If the there exists temporal information in the same row, or in the column

header for the snippet cell, it is almost always correct. Therefore, our model works in the

following steps:

• We look for temporal mentions in the column header, and return it with an association

score of 1 if found

• Otherwise we look for temporal mentions in the same row, as the snippet cell. If found,

the temporal mention is returned with an association score of 1

13



• If no temporal mentions are found in the column header or row, we search for temporal

mentions in table contexts. Any temporal information in context texts, is likely to be

associated to all information in the table. Therefore, we used a supervised model to judge

the relevance of the temporal mention in context, to the query words. The model uses

features similar to the temporal association model for free text.
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Chapter 5

Overall Model

For each snippet s, in addition to the relevance score rs, possible extractions of value charac-

terized by tsj, vsj, gsj , we have candidate temporal value Ys and each y ∈ Ys is associates with

a score csy that indicates the probability Pr(y|s) that time y is the valid time for the extracted

value in the snippet. The Pr(y|s) values are obtained from the temporal association model.

Let hτ (v|y) be a suitably trained regression function that represents the conditional distri-

bution of value v at time y. We train this function by using vsj, y, wsjy obtained over different

snippets s, their possible extractions j, candidate temporal associations y and weight wsjy de-

noting the possibility of snippet s having value vsj at time y.

5.1 Collective Inference Algorithm

The algorithm that we use for adjusting individual extraction scores by consensus is the collec-

tive inference algorithm, explained in Figure 5.1. The algorithm takes as input, all the snippets s

and its relevance score rs. With each snippet, we have the list of candidate extractions, for each

unit tagged : (ts1, vs1, gs1), .., (tsj, vsj, gsj). Each snippet also contains the list of time epochs,

identified in the snippet, with their association scores : Ys, and scores csy for each y ∈ Ys. For

each value, time pair in snippet s, wsjy is initialized.

The algorithm then iteratively updates the relevance scores rs and weights wsjy using a

leave-one-out mechanism. In each iteration, for each snippet s, the model hτ (v|y) is trained on

all value, time pairs from all snippets except s. The probability of each candidate extraction j

at each of the time epochs y in s, obtained from this retrained classifier, is used to update the

weights wsjy and rs.

15



Inputs: Pr(t|q); for all snippets s, rs and tsj, vsj, gsj for all candidate extractions j, candi-

date time mentions Ys, and scores csy for each y ∈ Ys.

Evolving variables: řs, w̌sjy

initialize hidden variables w̌sjy ← gsj rs Pr(tsj|q) csy
for iterations i = 1, 2, . . . do

for each snippet s do

let h\sτ (•) be a value distribution estimated from all snippets except s, using weights

w̌sjy

for each candidate extraction j, time y ∈ Ys do

φsjy ← gsj rs Pr(tsj|q) csyh\stsj(vsj|y) {consensus}

end for

φs⊥ ← 1− rs
D ← φs⊥ +

∑
j,y φsjy

řs ← (1/D)
∑

j,y φsjy

for each j, y do

w̌sjy ← φsjy/D

end for

end for

end for

Figure 5.1: Collective inference pseudocode.

5.2 Temporal regression models

The input to these models is a sequence of values {v1, . . . , vn}, time values {y1, . . . , yn}, and

a weight {w1, . . . , wn} indicating the importance of each time-value pair. Goal is to build a

model h(v|y) that can provide a probability distribution over the values v at each time y using

the v, y, w series. Another desiderata from the model is efficient retraining when weight of a

single instance is modified.

This can be modelled as a regression problem, and there are many options, including least

square, spline models, kernel regression, and Gaussian Process (GP) regression. Since we want

a probability distribution, and not just a point prediction at each t, we rule out pure time series

models such as ARIMA models. Of the models that output a distribution, the GP approach

appeared the most promising because of its non-parametric appeal.
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We first provide background on GP regression. Then we show how we perform efficient

retraining when we update weight of a single instance.

5.2.1 Gaussian Process Regression

The starting premise of GP regression is that the value at each time y follows a Gaussian dis-

tribution with mean µy and variance σy where both µy and σy are function of y. Also, if

vD = v1, . . . , vn are values at n finite time points yD = t1, . . . , tn, then they jointly follow

a multivariate Gaussian distribution. The covariance between any two vi, vj is proportion to

Kt(yi, yj) a kernel that measures the “proximity” between i and j. This has the natural interpre-

tation that values closeby in time are more correlated than far-off values. The covariance matrix

KD defining the joint Gaussian over the observed n points is thus a Gram matrix of the kernel

where the i, j entry is Kt(yi, yj) (we used a RBF kernel where Kt(yi, yj) = e−d(yi−yj)
2 where

d is a kernel width parameter. For the i, i entry, it is customary to add a noise parameter δ to

capture the uncertainty of the observed value.

Using the GP framework, we can obtain a probability distribution at any unknown time

value y. Any new time point y induces a new n + 1 dimensional Gaussian distribution defined

at the n points and y. The covariance matrix is defined exactly as above. From this n + 1

dimensional Gaussian, we can obtain the distribution for any point y by conditioning on the

remaining variables. We skip the details of the derivation [Mackay, 1998], and present the

formula for the mean and variance of this conditional distribution Pr(v|y,D) as Pr(v|y,D) ∼

N(µy, σy) where

µy = Kt(y,yD)Kt(yD,yD)−1vD, σ
2
y = Kt(y, y)−Kt(y,yD)Kt(yD,yD)−1Kt(y,yD)T

(5.1)

We can easily modify the above to include weighted points by multiplying kt(yi, yj) with wiwj ,

for ij ∈ D, multiplying kt(y, yi) by yi and multiple vi with wi.

Incremental retraining A computational challenge of the above model is that the estimation

of the mean and variance at a new point requires the inversion of a n× n matrix. When the set

of observations is fixed, we can precompute the inverse Kt(yD,yD)−1 in advance, and then the

operations required during prediction are quadratic in n instead of cubic. In our case, however,

the collective model, requires the leave one out probabilities which causes the set inD to change

constantly. We cannot afford to recompute the inverse with every change in D. We exploit the
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ideas presented in [Salmen et al., 2010] to efficiently update the inverse when the weights of

only only point changes.

5.2.2 Conditional Kernel Density

The GP model performs well on clean training data when values at a time t are uni-modal and

follow a Gaussian distribution. In our setting, the input values are candidate extractions from

noisy web snippets with possibly incorrect weights, and the values are far from uni-modal.

One of the possible reasons for a multi-modal nature of the distribution, might be the inherent

ambiguity in the query. For example, many snippets retrieved for queries with the attribute

“CO2 emissions”, contain the value of emissions resulting from various fuel types as opposed

to the “total” value for emission.

We designed the following method to estimate these densities 2D kernels.

Pr(v|t) ∝
n∑
i=1

wie
(t−ti)2/2σ2

√
2πσi

e(v−vi)
2/2σ2

i (5.2)

The above formula applies kernel density estimation at each point t where the weight of a

value vi is evaluated as a product of the initial weight wi and a kernel that measures the distance

between t and ti. Alternately, it can be viewed as a 2-D kernel density along the time and value

dimensions, with only diagonal co-variance terms. The variance σ2 along the time dimension is

a constant but along the value dimension it is allowed to change with the value. The reason for

this difference is that values extracted from noisy web snippets tend to be at arbitrarily different

scales, whereas the values for time fall within a narrow range because of the precision with

which time (year, in our experiments) is extracted.
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Chapter 6

Experiments

6.1 Workload

Corpora We use the web as our corpus, leveraging web search engines for retrieving relevant

documents. For our query workload, we retrieved pages, created snippets and stored them. The

extracted table store from web pages was augmented with the table store created by [Sarawagi

and Chakrabarti, 2014]

Queries and ground truth Our experiments were performed on 268 queries. The query

sources include

• WorldBank 172 queries on four attributes of countries: forest area, co2 emissions, land

area, and population. Ground truth was extracted from World Bank data.worldbank.org

• InfoGatherer 96 queries across temporally varying attributes: revenue and profits for 31

large corporations and corporate tax rate for 34 countries.

6.2 Performance measures

For each query, the ground truth G is available as a value gt at each time t at the granularity

of a year. The year values present in G varies with query. Since, we cannot hope to find the

exactly value match in the retrieved answers, following [Banerjee et al., 2009a, Sarawagi and

Chakrabarti, 2014], we assume that the query specifies a multiplicative confidence band ε. I.e.,

if a true point value is g, the user would be satisfied with a value in [(1 − ε)g, (1 + ε)g] (Our

19

http://data.worldbank.org/


results are with ε = 0.05). Meanwhile, QTQ presents a distribution h(v|t). The probability G

in h is measured as ∑
t∈G

∫ (1+ε)gt

v=(1−ε)gt
h(v)dv, (6.1)

which is the total area matching a ground truth value band.

In order to relate to conventional IR measures of retrieval efficacy, we also report a soft ver-

sion of mean average precision (MAP) measured as follows. Using the weights wsjy output by

the algorithm in Figure 5.1, we aggregate weights of “close” value,time pairs. Two value,time

pairs are “close” when they match on time, and their values fall within an ε band of each other.

We then generate a ranked list of time,value pairs v1, t1, . . . , vK , tK sorted on the aggregated

weight. We measure MAP on this ranked list using G = {(gt, t)} as follows:

1

|G|

K∑
k=1

δ
(
gtk ∈ [(1− ε)vk, (1 + ε)vk]

)
Data Sources We report results on three different data sources:

• Text - Uses only snippets extracted from text.

• Tables - Uses only tables snippets from the two table sources.

• TextAndTables - Uses snippets from both text and tables.

Our experiments show that using both text and table snippets outperforms using only text or

tables.

Collective Independent

Tables 0.138525735 0.109232259

Text 0.113230513 0.069155002

TextAndTables 0.144572313 0.097289548

Table 6.1: Comparing data sources using Temporal Kernel Density Model - Average Probability

6.3 Collective inference

We show that collective inference outperforms the independent model. We show an improve-

ment of 20% for MAP and 32% for average probability of ground data. This reaffirms our
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Collective Independent

Tables 0.0991265 0.084753233

Text 0.033009744 0.029138897

TextAndTables 0.119647444 0.099371035

Table 6.2: Comparing data sources using Temporal Kernel Density Model - MAP

belief that individual extractions from noisy web data are highly unreliable, and early hard-

ening of such extractions hurts performance. A consensus on the other hand, is successful in

weeding out noisy extractions, and increasing our belief in correct ones.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Tables Text TextAndTables

M
A

P
 

Collective

Independent

Figure 6.1: Comparing collective model with independent - MAP

6.4 Choice of Temporal model

We find in our experiments, that the Temporal Kernel Density model, beats the Gaussian Pro-

cesses model for all settings of data sources and extraction methods (collective and independent)

on both MAP and average probability. As observed earlier, this is due to the noisy nature of

extractions from the web.

6.5 Comparing Performance on Recent Extractions

We compare the performance of collective method on gold data from 2004 to 2013 against

performance on all ground data. We see that from our data that a large number of extractions
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Figure 6.2: Comparing collective model with independent - Average Probability over all queries

and gold time epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Tables Text TextAndTables

M
A

P
 

GaussianProcess

TemporalKernel

Figure 6.3: Comparing Temporal KD model with Gaussian Processes - MAP

are for recent years. The improved performance shows that the presence of more candidate

extractions (albeit slightly noisy), helps the overall performance.
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Figure 6.4: Comparing Temporal KD model with Gaussian Processes - Average Probability

over all queries and gold time epochs
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Figure 6.5: Comparing performance on recent ground data against performance on all data
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Chapter 7

Discussion and Future Work

The two main contributions we make with QTQare -

• Answering fluent quantity queries

• Combining extractions from both free text and tables for answering queries

As we see from the results, our method of combining extractions from text and tables, achieves

marked improvement over using only text or tables. The collective method of assigning ex-

traction scores, by consensus, which was shown to work well for temporally agnostic quantity

answering system in [Sarawagi and Chakrabarti, 2014] also performs better with the modifica-

tion to handle temporally varying quantities. We will now list some shortcomings and areas for

future work.

Temporal Model We show that the Temporal Kernel Density model outperforms the Gaus-

sian Processes model. This is mainly because for most temporal quantities the distribution is

not unimodal. However, allowing our distribution to be multimodal makes it slightly less robust

to weeding out noisy extractions in the collective model. Also, the Temporal KD model is not as

adept at interpolation for unobserved time values. Therefore, we think a better temporal model

more robust would help improve performance.

Better Text Snippet Relevance Scores We observe that the relevance scores obtained from

the rank SVM model are not very well calibrated. Creating more stringent filters is not a decent

option for us, as we need as many candidate values as possible, to observe temporal variations

in the quantity. The poor scores lead to problems downstream where many noisy values are
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scored higher than some correct values, and compound errors in the collective model. We also

observe that the main goal in the QCQ paper [Banerjee et al., 2009b] was to create better ranking

functions for tight value bands and the scores from the individual snippet ranking model were

just one of the many features they used for ranking bands of values. We believe we can improve

snippet ranking on QCQ with some simple additional features.

Distant Supervision One of the interesting future directions for this work, is to train the

temporal association model using Distant Supervision. Distant Supervision is a framework,

where a database of known facts or ground truth data (which is easily available), can be used to

annotate data for use by a Supervised model. The advantage of such an approach is, that it saves

human effort required for manual annotation. For our problem, we could use the ground truth

data which is the gold list of time, value pairs, to train a probabilistic model (a labeller), similar

to the regression model in the collective method. For annotating a candidate snippet (v, t), we

could output the probability of the v being true at time t from our labeller. This probability

could be used as a soft label instead of hard true, false manual labels.

Dependency Parse A dependency parse of text is used to represent the relation between var-

ious parts of the text. For example, for the sentence “My dog also likes eating sausage.”, the

following dependencies are output by the Stanford Parser1.

poss(dog-2, My-1)

nsubj(likes-4, dog-2)

advmod(likes-4, also-3)

root(ROOT-0, likes-4)

xcomp(likes-4, eating-5)

dobj(eating-5, sausage-6)

Using such dependencies as features for ranking snippets, could drastically reduce noisy

snippets. However, creating a dependency parse is time consuming, and its value on problems

with web data, is uncertain.

1nlp.stanford.edu:8080/parser/
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